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SoC / Computer / Bio
- HW + SW

= |ndustry—alignhed area

« SoC / Computer
— Solid—-State Disk (SSD)
— System architecture
— Low power design
— VLS| CAD

= Academia interests

* Bio—informatics
— Parallelization
— Machine learning
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Park SangHoon

Memory Inferface Scheme
MAND Flash based 550

Low-Power
Design

Baek, Je Hyun
Dynamic Voltage Scaling

Design of Machine learming algorithm
Integration of blo—sensors with SoCs

System
Architecture

Leg, Kwang Joon
Distributed bus matrix solution
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Evolution of Microelectronics

d Yesterday’s chip is today’s function block!

2.5 million gates
New Design Paradigm

HO0k gates
Simulation,
Emulation,
Synthesis,
50K gates Formal equivalence
20K gates ~ Schematics

Schematics & Synthesis
& simulation ‘ —M I

3.0u 1.0u 0.5 0.2u
Year 1978 Year 1984 Year 1992 Year 1999
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Billion Transistor Era

d 1 billion transistor SoCs are expected to be used in
products by 2008.

= Tens or even hundreds of computer—like resources in a single chip.

d According to ITRS, SoCs at 50nm will have 4 billion
transistors and operate at 10Ghz in the next decade.
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Silicon Technology Advance

4 High—volume, high—frequency chips

120 1 6000
—e— Logic Device 1/2 Pitch (nm) — 53 GHz clock
—=e——Logic Device Physical Gate Length (nm) . )
100 F\_ —&— Max Number of Metal Layers 5 billion transistors
g — &— Usable Transistors per Chip (in miIIio/n!f 9<J
S 80 /7 |00 §
= i
g 28
o 60 13000 €
S 3 2
@ 40 2000 =
2 g
wm
= 20 1000 )
0 0 2003 International Technology
2003 2006 2009 2012 2015 2018 Roadmap for Semiconductors
Technology year (TRS)

= High integration density
« Macrosystems = Microsystems
« Complex on—chip communication requirements

fa) TAUD BO|EREYS EUI-YOUNG(EY) CHUNG, May 6, 2010

twe?  School of Electrical and Electronic Engineering




System-on-Chips (SoCs)

1 Solution to cope with increasing circuit complexity.
= System in terms of subsystems
= Different Levels of Concepts and Abstraction

1 Efficient reuse of designs and design experience

= Pre—designed Intellectual property (IP) cores
* Processors, Cache and Memory cores

« DSP cores
. Buses (?)

= Meeting the TTM (time—to—market) constraint

 Facilitated by new design methodologies
= |nterface—based design
= Platform—based design
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On-Chip Interconnects

3 Communication channels for functional modules (or
IP blocks) integrated in a single chip.
= Shared media like a bus
= Dedicated point—to—point links

dSo far, on—chip interconnects provide Ilimited
pandwidth for lower—performance, |lower—power
cores.

1 Standardized bus systems with the incorporation of
pre—designed Intellectual Property (IP) cores.

= AMBA (Advanced Microcontroller Bus Architecture) by
ARM

= SiliconBackplane uNetwork by Sonics
= CoreConnect by IBM

EUI-YOUNG(EY) CHUNG, May 6, 2010



Popular Industry Solutions

3 AMBA (Advanced Microcontroller Bus Architecture)
= ARM

4 SiliconBackplane MicroNetwork
= Sonics

1 CoreConnect
= |BM

GPIO| SSP SCI
{PLOG1) (PLO22)| {PL131)|

l | | ocreus | |

System System Systemn Peripheral || Peripheral
Care Core Core Core Core

T p—

Bus 5
Processor Local Bus Bridge(s) On-Chip Peripheral Bus =

=

[Arbiter ]

Contraller

I CoreConnect Bus Architecture

oCcmM APU
GC P On-Chip LE__|Processor| __LFE__| Auxiliary
Memary Core Processor

L_MicroNetwork Open Protocol
Agents Standard

i WY

DCR Bus | |
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High Density SoC Based on Buses

_01BM POWERS5 (Year 2004)
o Lo

276 million Tr.

389mm? chip has

64KB L1 32KB L1 64KB L1 32KB L1 16 execution units,

I-cache D-cache I-cache D-cache 2 12MB Cache,

ClU switch, 170 controller,
L3 controller/directory,
memory controller, and

36MB LS Core Interface Unit Switch (xbar) more resources for SMT

Controller
L3 cache s — (PC, RAT, RF, CL, etc.)

CIUS Interface CIUS Interface

170 Memory
Controller Controller

Fabric Controller

xRefer to http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.htmi
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Characteristics of Bus-based Interconnects

O Communication based on shared—medium (e.g.

bus)
= Multiplexer—oriented topologies
J Pros
= Simple topology, low area cost and extensibility
dCons v w1
= Performance bottleneck T T T
= Scalability problem M, My

= Power consumption inefficient
= Unpredictable performance

(@) QM0 1) ¥KgYR 13 EUI-YOUNG(EY) CHUNG, May 6, 2010
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Properties Limiting the Use of Bus

J Wire delay
= Wires become “longer”, and wire delay becomes a performance

bottleneck
= Partition a long wire in segments with repeaters

= Synchronization problem

1 Power
= More energy consumption due to longer wires
= To reduce delay, bigger drivers are used, which increase energy
consumption

= Typical solutions

* Reduce voltage swing
— Good for performance and power
— But reduces noise margins => more errors!

 Differential signaling
 Signal integrity
= Growing capacitive and inductive coupling between wires
= |R drop, Cross—talk, Electro—migration, ...

14
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Reachable Physical Distance Per Clock

J Reachable physical distance within one clock
1GHz POWER4 (.18um) 8GHz* POWERG6 (.065um)

100%06 reachable in one clock 18906 reachable in one clock

* Projected values
(Year 2006)
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Performance Impact of On-Chip Interconnect

Operation Delay delay %

(0.13um)  (0.05um)
32b ALU Operation 650ps 250ps
32b Register Read 325ps 125ps B
Read 32b from 8KB RAM 780ps 300ps 0.5 e
Transfer 32b across chip (10mm) 1400ps 2300ps oxs B 1
Transfer 32b across chip (20mm) 2800ps 4600ps

- I

88 94 00 Year
2.1 global on-chip comm to operation delay

9:11in 2010 Bl zate delay

|:| delay due to
sizing and buffering

Taken from W.J. Dally presentation: Computer architecture is all about interconnect (it [ ] interconnect delay
is now and it will be more so in 2010) HPCA Panel February 4, 2002
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Challenges in SoC Design

J Time—to—market pressure

_ ) . Log #
Design productivity gap transstors

d Complexity Technology

= Heterogeneous
= Deep submicron effects

= Performance/Energy/Cost
tradeoff

= Scalable architecture >

d New Design Paradigm .
= |P/Platform—based design
= Error tolerant design strategy
= |[nterconnect oriented design

= Paradigms shifts in design methodology is the only escape

paradigm
shifts
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Network on Chip

J Communication channels for
computer systems or modules

integrated within a single chip.

= Resources are interconnected
by a network of switches.
O Large—scale integration of
SoCs with the scalable
interconnects

Syst:em-on-chip




Advantages of NoC

D Reuse m Reuse Technology
= Components and resources o g
= Communication platform
= Design and verification time oy a8
0 Predictabili a
Y -

= Communication performance
= Electrical properties

1 Scalability
= Computing, Memory and Interconnection Resources

J Modular, compositional
= Decoupling computation and communication

19 EUI-YOUNG(EY) CHUNG, May 6, 2010




Yet Another Interconnection Network

FPGA Network

- Computer

Chip Design SoC Architecture

Processors

NoC

( Networks-on-a-Chip;
On-chip interconnect networks )

() QM0 BHKg T 20 EUI-YOUNG(EY) CHUNG, May 6, 2010
twe?  School of Electrical and Electronic Engineering



Outline
QALZA )

1 SoC architecture

1 System-—level low power design

(@) MUY B HTEYs EUI-YOUNG(EY) CHUNG, May 6, 2010
twe?  School of Electrical and Electronic Engineering



High Energy Consumption incurs

[he 5th Wave By Rich Tennant
BFCATEMNANT © 2004 R Teneanl i, iy niversal Press Syicate
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Hot Chips are No Longer Cool!

1000

0
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?5100 Pentium® 4

(@)

~~

(0]

]

H .
© Hot plate , “
; Panurn® | g >

10 |
Pentium® Pro
Pentium®
1
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* “New Microarchitecture Challenges in the Coming Generations of CMOS Process
Technologies” — Fred Pollack, Intel Corp. Micro32 conference key note - 1999.
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High Temperature incurs ...

Source: Tom’s Hardware Guide
http://www6 tomshardware.com/cpu/01q3/010917/heatvideo-01.html
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What's the benefit from High Temperature?
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Solutions from Mechanical Engineering
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Design challenges: ITRS predicts ... (1)

Table 9 System Functional Requirements for the PDA SOC-LP Driver
YEAR OF PRODUCTION 2003 2004 2009 2002 2015 2018
Process Technology (nm) 101 90 65 45 32 22
Supply Voltage (V) 1.2 1 0.8 0.6 0.5 0.4
Clock Frequency (MHz) 300 450 600 900 1200 1500
Lﬂ:—%lﬁi;l:.:l.lj.;l]lm1I mum regquired I;Ert:)llér;l;gr;l; Real {'hrgeé\gddﬁ:?F?odec Real Time Interpretation
Application {other) Web Browser TV Telephone (1:1) TV Telephone (>3:1)
Electric Mailer| Voice Recognition (Input) \Foi?g E;{;?i‘?}?]i}“ﬂn
Scheduler Authentlizc“a;iiﬁz}{{} rypto
Processing Performance (GOPS) 0.3 2 14 77 461 2458
Required Average Power (W) 0.1 0.1 0.1 0.1 0.1 0.1
Required Standby Power {mW) 2 2 2 2 2 2
Batterv Capacity { Wh/Kg) 120 200 200 400 400 400

) ST MY

“ayat  School of Electrical and Electronic Engineering

—

No increase in power consumption required!




Design Challenges: ITRS predicts ... (11)
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Motivation: In 2003, ITRS predicts ... (111)

Table 10

Power Management Gap for SOC LP-PDA

2003 200t 2009 2012 2015 2018
Total LOP Dynamic Power Gap (X) 0.0 0.2 1 2.4 4.7 8.1
Total LSTP Dywamic Power Gap (X) 0.0 0.4 1.2 3.00 5.7 114
Total LOP Standby Power Gap (X) 0.37 3.44 8.73 18.79 44.38 231.9
Total LSTP Standby Power Gap (X) -0.98 -0.96 -0.90 -0.78 -0.53 0.10

e DP: (Total power — 0.1W) 7/ 0.1W
e SP: (Total standby power — 2mW) /7 2mW

- Need to provide power management scheme
At the levels of application, OS, architecture, IC

ofapanilicld 0 EVCHUNG May6.2010
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Motivation of low power design

 Enhance operation time of portable electronic
devices

— Batteries can release limited energy

« Reduce heat generation in high-performance
Processors

— High power consumption requires adequate
dissipation

 Reduce energy cost
« Determine power/performance spectrum

ofapantlicid o EYCHUNG May6.2010
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Target system and power reduction techniques

e Target system: processor based systems

Application program

Operating system

Hardware

‘ Algorithm implementation

‘ Uniform interface / Resource manager

‘ Actual energy consumer

Software (Application program and OS) control

the behavior of actual energy consumer

ofapantlicid s EVCHUNG May6.2010
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Design effort breakdown

Relative Effort by Designer Role

250%

200%
B Software
150% O Validation
O Physical
100% - B Verification
O Architecture
50%
0%

350nm 250nm 180nm 130nm 90nm

4IBS Nov. 2002
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Various system-level low power techniques

DPM DVS Memory
Predictable Predictable Memory access
App| ication idle interval work amount pattern
program
I Decision Decision Memory
Management
OS

I Shutdown V/F change Memory

hierarchy
Hardware Data saving

Bus encoding

ofapantalicld 0w EVCHUNG May6.2010
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Dynamic Power Management

e Shut down the system while the system
IS IN Idle state

power

J I = Els;tate

dbusydidlelsleep

&) R WjErgYs
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DPM overhead

Without | System state Busy ldle Busy

DPM 1
Power

Time

Shutdown state™~_ Wakeup state \@
System state Busy . Sleep . Busy

With
DPM

Power

Time

Performance and energy overhead
due to shutdown and wakeup




An example: STRONGARM SA1100

« RUN: operational 400mwW

 |DLE: a sw routine
may stop the CPU

when not in use, 10us 90us
while monitoring 160ms
interrupts 10us

« SLEEP: Shutdown
50mW 160uW

of on—chip activity

@) fMuLE BojETges
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Shutdown criteria

- Break even time : Ty,
— Shortest idle period for energy saving

_no shutdown shutdown
power

... — » 3
: The ;I The

wrong shutdown
<

|dle period shorter than T, Is useless
for energy saving




The challenge

>

‘_ IS an /dle period long enough
for shutdown (T,,)7

Predicting the future!




Uncertainty of idle period length

* |dle period is determined by user behavior




Categories of DPM techniques

e Timeout : [Karlin94, Douglis95, Li94, Krishnan99]

— Shutdown the system when timeout expires
— Fixed vs. adaptive

e Predictive : [Chung99, Golding95, Hwang0O0, Srivastava96]
— Shutdown the system if prediction is longer than T,

e Stochastic : [chung99, Beninig9, Qiu99, Simunic01]
— Model the system stochastically (Markov chain)
— Policy optimization with constraints
 Trade off between energy saving and performance
— Non-deterministic decision
— Discrete time model / Continuous time model
— Superior to predictive and timeout

ofapantlicid o EYCHUNG May6.2010
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Measurement

I Power B # of shutdq - ,; B # of wroggsihutdown
5
4.5
4
3.5
3
2.5
2
1.5

No Wrong

S N
/

1)

no shutdown

N VoS Q
& ST




Dynamic Voltage Scaling

Basic Idea of DVS

EO{NcycIe'VDz‘D P=1C" V.f2

Power Deadline

5.02 (a) NO
B Power—down
10 30

5.0° (b) Power—down

(DTM)

10 30

5 02 (c) DVS

30

» Slow and Steady wins the race!

15 x 108 cycle
5.0V
37.5]

5 x 108 cycle
5.0V
12.5]

6 x 108 cycle
2.0V
2.4J



Key Issues for successful DVS

e Efficient detection of slack/idle intervals
e Efficient voltage scaling policy for slack intervals

power
{ ................ Q time
[ N| | | NS .

constant frame

decoding period exploits idleness
e Decoding power variation with constant time

’ power

&) R WjErgYs
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‘Dynamic Voltage Scaling

e Key Question
— How can we predict the future workload?

— Workload Estimation Technique is needed

e An amount of power consumption in a certain
applications is extremely different according to types of
workloads.

e A large variation of workloads is a challenging problem
to achieve low-power consumption in portable devices.

Ofapantlicid o EVCHUNG May6.2010
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~Two type of DVS algorithms

e Inter-task DVS

— Scaling occurs at the start of a task
e It is unchanged until the task is completed
— Use worst-case slack time (= Deadline,,o, — WCET¢)
— Usually used in multi-task scheduling scenario at OS level

e Intra-task DVS

— Scaling occurs at the sub-task level
e Different frequency is set for each sub-task
— Use workload-variation slack time

Linear method Off-line
Inter-DVS _ _

Filter-based method On-line

Path-based method _
Intra-DVS Off-line

Stochastic method

L i School of Electrical and Electronic Engineering




\ DVS for Multimedia

e Multimedia applications are required to process each unit
of data, typically called a frame, within a time limit called

a deadline.

e The processor may complete a frame'’s
computation before the deadline.

e The existence of this idle time, called s/ack, implies that
the processor can be slowed to save energy.

power

| | | |

constant frame
decoding period

Ofapanilicid e EYCHUNG May6.2010
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Linear Model

 Linear model between workload size and timing

Information [6]

— By considering both macroblock types and frame length, it is possible to
define tight fitting linear models of MPEG decoding, with R? values of 0.97

2e+07
+ . Pframg-ts + .
1.8e+07 | Bframes o | ) _.1‘
+ e
'I
- f .
1.6e+07 | _l =8
in
o 148407 ]
@
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B 1.2e+07 ]
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8e+08
¥
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6e+06 [ e
4e+06 |- -
1 1 1 1 1 1 1 1 -_I A Il,\ al A a* . A
0 500 1000 1500 2000 2500 3000 3500 4000 4500 571076 107 ) 157107 21077
Frame number Fitted: Bytes:Frame

QFrame Decode Times Separated by Frame Type Decode Time As a Function of Frame Length and Type
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Inter-task — Filter-based Technique

e Moving Average (MA)
— The simplest filter is a time-invariant moving average filter.

e Exponential Weighted Average (EWA)

— This filter is based on the idea that effect of workload k-slots before the current slot
lessens as k increases lesser weight to the one before and so on.

e Least Mean Square (LMS)

— It makes more sense to have an adaptive filter whose coefficients are modified
based on the prediction error.

e Proportional — Integral — Derivative controller (PID)
— This is generally used for error correction in estimation.

— Previous estim W’;\tlon error : i = Wi —Wi ( Wi. ith actual workload,
Fth estimation”)

) AW.
— A PID controller calculates correctlon value as
—&i_
AW, =K &, +— Ze+k I"Wo
WD

— Estimation for next workload : "+ = " + AW,

ofapanilicld s EYCHUNG May6.2010
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Inter-task DVS with Kalman Filter

e Voltage selection and decoding time comparison of PID, KF, and oracle
method
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\ Inter-task DVS with Kalman Filter

e Experimental Results

60
MA
m PID
50 wKF
m Oracle

W
o
|
|

Energy Consumption(%b)
N
o

20 -

cdrs logo-UC us Average
Video clips
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Summary

 Diverse research area in SoC Design
e Architecture designh becomes more
critical

— ONn-Chip communication architecture for
multi- and many cores

e Low power Is must

— A single technique cannot satisfy the
requirement

— System-level techniques show large effect
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