컴퓨터및회로설계특론

첨단 System-on-Chip 기술 (2)

Outline

□ 연구실 소개

□ SoC architecture

System-level low power design

연구실 소개

□ 구성원

(Churtie Contraction Contrac

- 4 (박사과정) + 9 (석사과정) (학연 4명: 삼성, LG, 하이닉스)
- □연구 분야
 - SoC / Computer / Bio
 - HW + SW
 - Industry-aligned area
 - SoC / Computer
 - Solid-State Disk (SSD)
 - System architecture
 - Low power design
 - VLSI CAD
 - Academia interests
 - Bio-informatics
 - Parallelization
 - Machine learning

연구 실적

❑ On-going projects (연 2억내외)

- SSD 관련 연구: 삼성 / 하이닉스 / 한국연구재단 기초연구
- Low power design 관련 연구: 삼성 (3월 종료)
- System Architecture 관련 연구: 산업원천기술 (서울대 와)
- Bioinformatics 관련: 한국연구재단 신진연구
- □ 논문
 - SCI(E) 급 논문 21편 (책임 14편) from 2005.09
 - 유관분야 grand slam
 - IEEE Tcomputers, IEEE TCAD, IEEE TVLSI
 - IEEE transaction or IF > 3 이상 논문: 10편 (책임 6편)
- □특허 / 기술이전
 - 보강해야 할 부분임 ⊗
 - 산학협력단 나성권 변리사와 SSD에 대해 집중키로 함

Outline

□ 연구실 소개

□ SoC architecture

System-level low power design

Evolution of Microelectronics

Yesterday's chip is today's function block!

Billion Transistor Era

- I billion transistor SoCs are expected to be used in products by 2008.
 - Tens or even hundreds of computer-like resources in a single chip.
- According to ITRS, SoCs at 50nm will have 4 billion transistors and operate at 10Ghz in the next decade.

11 computers

Silicon Technology Advance

□ High-volume, high-frequency chips

- High integration density
 - Macrosystems ⇒ Microsystems
 - Complex on-chip communication requirements

System-on-Chips (SoCs)

□ Solution to cope with increasing circuit complexity.

- System in terms of subsystems
- Different Levels of Concepts and Abstraction
- Efficient reuse of designs and design experience
 - Pre-designed Intellectual property (IP) cores
 - Processors, Cache and Memory cores
 - DSP cores
 - Buses (?)
 - Meeting the TTM (time-to-market) constraint
- □ Facilitated by new design methodologies
 - Interface-based design
 - Platform-based design

On-Chip Interconnects

- Communication channels for functional modules (or IP blocks) integrated in a single chip.
 - Shared media like a bus
 - Dedicated point-to-point links
- So far, on-chip interconnects provide limited bandwidth for lower-performance, lower-power cores.
- Standardized bus systems with the incorporation of pre-designed Intellectual Property (IP) cores.
 - AMBA (Advanced Microcontroller Bus Architecture) by ARM
 - SiliconBackplane uNetwork by Sonics
 - CoreConnect by IBM

Popular Industry Solutions

AMBA (Advanced Microcontroller Bus Architecture)

- ARM
- SiliconBackplane MicroNetwork
 - Sonics
- CoreConnect
 - IBM

8

High Density SoC Based on Buses

*Refer to http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

Characteristics of Bus-based Interconnects

- Communication based on shared-medium (e.g. bus)
 - Multiplexer-oriented topologies
- Pros
 - Simple topology, low area cost and extensibility
- 🗆 Cons
 - Performance bottleneck
 - Scalability problem
 - Power consumption inefficient
 - Unpredictable performance

Properties Limiting the Use of Bus

□ Wire delay

- Wires become "longer", and wire delay becomes a performance bottleneck
- Partition a long wire in segments with repeaters
- Synchronization problem

Power

- More energy consumption due to longer wires
- To reduce delay, bigger drivers are used, which increase energy consumption
- Typical solutions
 - Reduce voltage swing
 - Good for performance and power
 - But reduces noise margins => more errors!
 - Differential signaling
- Signal integrity
 - Growing capacitive and inductive coupling between wires
 - IR drop, Cross-talk, Electro-migration, ...

Reachable Physical Distance Per Clock

Reachable physical distance within one clock

1GHz POWER4 (.18µm)

8GHz^{*} POWER6 (.065µm)

100% reachable in one clock

18% reachable in one clock

* Projected values (Year 2006)

Performance Impact of On-Chip Interconnect

Operation	Delay		
	(0.13um)	(0.05um)	
32b ALU Operation	650ps	250ps	
32b Register Read	325ps	125ps	
Read 32b from 8KB RAM	780ps	300ps	
Transfer 32b across chip (10mm)	1400ps	2300ps	
Transfer 32b across chip (20mm)	2800ps	4600ps	

2:1 global on-chip comm to operation delay 9:1 in 2010

Taken from W.J. Dally presentation: Computer architecture is all about interconnect (it is now and it will be more so in 2010) HPCA Panel February 4, 2002

(2

Challenges in SoC Design

Time-to-market pressure

Design productivity gap

Complexity

- Heterogeneous
- Deep submicron effects
- Performance/Energy/Cost tradeoff
- Scalable architecture
- New Design Paradigm
 - IP/Platform-based design
 - Error tolerant design strategy
 - Interconnect oriented design

⇒ Paradigms shifts in design methodology is the only escape

Network on Chip

- Communication channels for computer systems or modules integrated within a single chip.
 - Resources are interconnected by a network of switches.
- Large-scale integration of SoCs with the scalable interconnects

(2

연세대학교 전기전자공학

Advantages of NoC

Reuse

- Components and resources
- Communication platform
- Design and verification time
- Predictability
 - Communication performance
 - Electrical properties
- Scalability
 - Computing, Memory and Interconnection Resources
- Modular, compositional
 - Decoupling computation and communication

Yet Another Interconnection Network

Outline

□ 연구실 소개

□ SoC architecture

System-level low power design

High Energy Consumption incurs ...

Hot Chips are No Longer Cool!

* "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

High Temperature incurs ...

Source: Tom's Hardware Guide http://www6.tomshardware.com/cpu/01q3/010917/heatvideo-01.html

What's the benefit from High Temperature?

Solutions from Mechanical Engineering

Year of Production	2003	2006	2009	2012	2015	2018
Process Technology (nm)	101	90	65	45	32	22
Supply Voltage (V)	1.2	1	0.8	0.6	0.5	0.4
Clock Frequency (MHz)	300	450	600	900	1200	1500
Application (maximum required performance)	Still Image Processing	Real Time Video Codec (MPEG4/CIF)		Real Time Interpretation		
Application (other)	Web Browser	TV Telephone (1:1)		TV Telephone (>3:1)		
	Electric Mailer	Voice Recognition (Input)		Voice Recognition (Operation)		
	Scheduler	Authentication (Crypto Engine)				
Processing Performance (GOPS)	0.3	2	14	77	461	2458
Required Average Power (W)	0.1	0.1	0.1	0.1	0.1	0.1
Required Standby Power (mW)	2	2	2	2	2	2
Battery Capacity (Wh/Kg)	120	200	200	400	400	400

Table 9 System Functional Requirements for the PDA SOC-LP Driver

No increase in power consumption required!

Design Challenges: ITRS predicts ... (II)

Figure 10 Total Chip Power Trend for SOC-LP PDA Application

Motivation: In 2003, ITRS predicts ... (III)

	2003	2006	2009	2012	2015	2018
Total LOP Dynamic Power Gap (X)	0.0	0.2	1	2.4	4.7	8.1
Total LSTP Dynamic Power Gap (X)	0.0	0.4	1.2	3.00	5.7	11.4
Total LOP Standby Power Gap (X)	0.37	3.44	8.73	18.79	44.38	231.9
Total LSTP Standby Power Gap (X)	-0.98	-0.96	-0.90	-0.78	-0.53	0.10

 Table 10
 Power Management Gap for SOC LP-PDA

- DP: (Total power 0.1W) / 0.1W
- SP: (Total standby power 2mW) / 2mW

• Need to provide power management scheme • At the levels of application, OS, architecture, IC

Motivation of low power design

- Enhance operation time of portable electronic devices
 - Batteries can release limited energy
- Reduce heat generation in high-performance processors
 - High *power* consumption requires adequate dissipation
- Reduce energy cost
- Determine *power/performance* spectrum

Target system and power reduction techniques

Target system: processor based systems

Application program

Operating system

Hardware

Algorithm implementation

Uniform interface / Resource manager

Actual energy consumer

Software (Application program and OS) control the behavior of actual energy consumer

Various system-level low power techniques

Dynamic Power Management

Shut down the system while the system is in idle state

An example: STRONGARM SA1100

- RUN: operational
- IDLE: a sw routine may stop the CPU when not in use, while monitoring interrupts
- SLEEP: Shutdown of on-chip activity

Shutdown criteria

- Break even time : T_{be}
 - Shortest idle period for energy saving

The challenge

Is an idle period long enough for shutdown (T_{be}) ?

Predicting the future!

Uncertainty of idle period length

Idle period is determined by user behavior

Need a technique to predict idle length!

Categories of DPM techniques

- **Timeout :** [Karlin94, Douglis95, Li94, Krishnan99]
 - Shutdown the system when timeout expires
 - Fixed vs. adaptive
- Predictive : [Chung99, Golding95, Hwang00, Srivastava96]
 Shutdown the system if prediction is longer than T_{be}
- Stochastic : [Chung99, Benini99, Qiu99, Simunic01]
 - Model the system stochastically (Markov chain)
 - Policy optimization with constraints
 - Trade off between energy saving and performance
 - Non-deterministic decision
 - Discrete time model / Continuous time model
 - Superior to predictive and timeout

Dynamic Voltage Scaling

Basic Idea of DVS

$$E \propto N_{cycle} \cdot V_{DD}^2$$
 $P = C \cdot V \cdot f^2$

» Slow and Steady wins the race!

Key Issues for successful DVS

- Efficient detection of slack/idle intervals
- Efficient voltage scaling policy for slack intervals

Dynamic Voltage Scaling

Key Question

- How can we predict the future workload?
- Workload Estimation Technique is needed
 - An amount of power consumption in a certain applications is extremely different according to types of workloads.
 - A large variation of workloads is a challenging problem to achieve low-power consumption in portable devices.

Two type of DVS algorithms

Inter-task DVS

- Scaling occurs at the start of a task
 - It is unchanged until the task is completed
- Use worst-case slack time (= $Deadline_{task} WCET_{task}$)
- Usually used in multi-task scheduling scenario at OS level

Intra-task DVS

- Scaling occurs at the sub-task level
 - Different frequency is set for each sub-task
- Use workload-variation slack time

	Voltage scaling method	Scaling decision
Inter-DVS	Linear method	Off-line
	Filter-based method	On-line
Intra-DVS	Path-based method	
	Stochastic method	UII-IIIIe

DVS for Multimedia

- Multimedia applications are required to process each unit of data, typically called a **frame**, within a time limit called a **deadline**.
- The processor may complete a frame's computation before the deadline.
- The existence of this idle time, called *slack*, implies that the processor can be slowed to save energy.

Linear Model

- Linear model between workload size and timing information [6]
 - By considering both macroblock types and frame length, it is possible to define tight fitting linear models of MPEG decoding, with R² values of 0.97 and above.

□ Frame Decode Times Separated by Frame Type

Decode Time As a Function of Frame Length and Type

Inter-task – Filter-based Technique

Moving Average (MA)

– The simplest filter is a time-invariant moving average filter.

Exponential Weighted Average (EWA)

 This filter is based on the idea that effect of workload k-slots before the current slot lessens as k increases lesser weight to the one before and so on.

Least Mean Square (LMS)

 It makes more sense to have an adaptive filter whose coefficients are modified based on the prediction error.

Proportional – Integral – Derivative controller (PID)

- This is generally used for error correction in estimation.
- Previous estimation error : $\mathcal{E}_i = w_i \hat{w}_i$ (w_i : *i*-th actual workload, *i*-th estimation *i*)
- A PID controller calculates correction value Δw_i as

$$\Delta w_{i} = k_{P} \varepsilon_{i} + \frac{1}{k_{I}} \sum_{i}^{W_{I}} \varepsilon_{i} + k_{D} \left(\frac{\varepsilon_{i} - \varepsilon_{i-W_{D}}}{W_{D}} \right)$$

– Estimation for next workload : $\hat{w}_{i+1} = \hat{w}_i + \Delta w_i$

Inter-task DVS with Kalman Filter

Voltage selection and decoding time comparison of PID, KF, and oracle method

Inter-task DVS with Kalman Filter

Experimental Results

Summary

- Diverse research area in SoC Design
- Architecture design becomes more critical
 - On-Chip communication architecture for multi- and many cores
- Low power is must
 - A single technique cannot satisfy the requirement
 - System-level techniques show large effect

